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Deformation of internal boundaries 
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University of Maryland, College Park, Maryland, USA 

A geometrical analysis of the deformation of internal boundaries is presented using the 
slip systems as reference co-ordinate axes to describe the orientation of the two phases 
adjacent to the boundary. The present analysis can be applied to any type of boundary 
such as a grain boundary, a twin boundary or a two-phase interface. The nature of the 
disturbance left by a dislocation cutting through the boundary is characterized by a 
boundary dislocation, the Burgers vector of which can be determined from the 
orientation relationship between the adjacent slip systems. Whenever the crystal dis- 
location, cutting through the boundary, has a Burgers vector component normal to the 
boundary, the disturbance also possesses a ledge character, the motion of which may 
cause both grain boundary sliding as well as migration. The formulae derived are applied 
to simple cases to determine the nature of the boundary dislocations. 

1. Introduct ion 
Though many attempts have been made to 
establish the exact structure-property relation- 
ships for polycrystals during the past half 
century, an understanding of the detailed 
deformation mechanisms involved is quite limit- 
ed. An extension of available knowledge 
obtained from the deformation of single crystals 
to polycrystals is very difficult owing to the 
imposition of additional constraints by the grain 
boundaries [I]. Much work has been done 
with bi-crystals [2-11 ] in order to understand the 
constraints imposed by the grain boundary on 
the deformation of the entire aggregate. It was 
observed that slip lines in many cases are con- 
tinuous across the boundary [11 ]. Furthermore, 
additional slip systems were found to be activated 
in both grains (systems other than those which 
would operate had the crystals been deformed 
separately). The continuity of slip across the 
boundary implies that glide dislocations pass 
through the boundary and that the boundary 
itself undergoes deformation because of this 
passage. The ease with which the boundary 
undergoes deformation should control the ease 
with which slip can propagate from one grain to 
the other. The deformation of the boundaries 
separating two crystals of differing crystal 
structure is much more complicated. Studies of 
the deformation of mild steel fibres imbedded in a 
�9 1974 Chapman and Hall Ltd. 

silver matrix [12] showed that slip lines were 
found to be continuous across the interface with 
slip lines propagating from silver to mild steel. 
Such composites with well-defined interfaces are 
produced by directional solidification of eutectic 
alloys [13, 14]. Fleischer [15] was the first to 
point out that a dislocation crossing into a region 
of different lattice constant along the slip 
direction must create a sessile dislocation at the 
interface. However, he considered a simple case 
where the slip systems in the two crystals were 
parallel. For a general case, deformation of the 
boundary is much more complicated. 

The deformation of simple tilt and twist 
boundaries within simple cubic structures has 
been studied by passing dislocations across the 
boundaries [16-20]. The resulting disturbances 
at these boundaries were in turn analysed using 
the concept of grain-boundary dislocations 
[21-24]. In particular, the above studies covered 
several individual cases involving the passage of 
edge and screw dislocations across a symmetric 
tilt or twist boundary under conditions of both 
homogeneous [19] and heterogeneous shear [18]. 
In the present paper, a general analysis is 
presented which is applicable to any type of 
boundary including the interfaces contained 
within two-phase materials. In the first part of 
the present paper, general equations describing 
the shear of a general boundary are derived, 
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while in the latter sections, they are applied to 
some specific cases. The present analysis, how- 
ever, neglects the nature of the initial dislocation 
structure of the boundary as well as the inter- 
action of these structural dislocations with the 
dislocations shearing the boundary. 

2. Generalized co-ordinates 
For a complete mathematical description of a 
boundary separating two crystals, five parameters 
are necessary since such a boundary has five 
degrees of freedom [25]. It is customary to 
prescribe these parameters in terms of three 
Eulerian angles [26] which describe the rotation 
of the two grains and two angles to describe the 
orientation of the outward normal to the boun- 
dary*. For a consideration of the shear of the 
boundary by the passage of dislocations across 
it, it is sometimes more advantageous to prescribe 
the above five parameters in terms of the slip 
systems directly, instead of in terms of Eulerian 
angles. Both descriptions, however, are essentially 
the same. 

Fig. la, for example, shows how the grain 
boundary is specified with respect to the two slip 
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Figure 1 (a) Co-ordinate axes in two adjacent phases, (b) 
relationship between the two systems of co-ordinates. 

systems in adjacent grains. As an example, we 
have represented the boundary as an interface 
and the two crystals adjacent to the boundary as 
two phases which may have two different crystal 
structures. However, the boundary can also be a_ 
grain boundary or a twin boundary in whick 
case the crystal structures of the two phases 
represented in Fig. l a are the same. Hence, in 
the present analysis, terms such as phases and 
interface are used in a very general sense and the 
crystal structures of the two phases separated 
by the boundary may or may not be the same. I t  
is assumed, further, that the predominant slip 
systems of the two phases are known. 

The reference co-ordinates, x 1, x~, xn are 
chosen to be parallel to bl, nl and b 1 x n 1 
respectively, where b 1 is the Burgers vector and 
nl is a vector normal to the slip plane in phase I. 
The co-ordinates x~', x2', x~' correspond to  
b2, n2 and b 2 • n2 respectively, where b~ and nz 
specify the slip system in phase II. The outward 
normal to the boundary before deformation is 
denoted by hi. It is to be noted that unless 
otherwise mentioned, all of  the vectors are 
expressed in terms of the unprimed co-ordinate 
system. Furthermore, in all of  the following 
figures two vectors are indicated as parallel 
vectors by two inclined lines. The relation 
between the two systems of co-ordinates is 
shown in Fig. 1 b. The transformation matrix that 
describes the primed system of co-ordinates in 
Fig. l b with respect to the unprimed system o f  
co-ordinates is given by 

a = a~i A (1) 

where aji are the directional cosines of the 
primed co-ordinate axes. Although the above 
matrix contains nine elements, it can be easily 
shown that only three of them are independent 
[28] and these correspond to the three Eulerian 
angles. 

3. Propagation of slip across a boundary 
Having described the boundary and the orienta- 
tion of the adjacent crystals in terms of the two 
slip systems and the normal vector (Fig. l) we 
will now describe its deformation. Fig. 2 
schematically illustrates the passage of a dis- 
location from phase I to phase II. In general, the 
magnitude of the Burgers vector and the inter- 
planar distances A and a need not be the same as 
indicated in Fig. 2. In such cases, the continuity 

*Chalmers [27] considered additional degrees of freedom associated with the relaxed boundaries. For the purpose of 
the present geometrical analysis, it will suffice to consider only the five degrees of freedom discussed above. 
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Figure 2 Passage of a dislocation from one phase into the other. 

of slip planes across the interface is established 
by the presence of interface dislocations [16, 29 ].* 
Due to the relative rotation of the two slip 
systems as well as to the difference in the 
magnitude of  the slip vectors, a disturbance is 
left at the boundary when a dislocation passes 
from one phase into the other. Such a disturbance 
is characterized by an effective Burgers vector 
given by 

= ( b l  - a b2)  (2 )  

and a line vector LI which can be represented, for 
simplicity, by 

L I = L 1  + L 2  (3) 

where L 1 and L2 are the lines of intersection of 
the two slip planes adjacent to the boundary 
with the boundary plane. Here subscripts 1 and 2 
refer to phases I and II, respectively, while 
subscript I refers to the interface plane. By 
definition, the dislocation described by Equations 
2 and 3 is glissile if its Burgers vector and fine 
vector lie in the plane of the boundary.~ This 
condition can be expressed as 

b i ' n i  = 0 . ( 4 )  

The dislocation will be sessile otherwise. 
There could, however, be cases where the 

crystal lattice dislocations (CLD) may not cut 
through the boundary, but become embedded 
in the boundary. In such cases, the dislocations 
can still be considered as interface dislocations 
where Burgers vectors are given by Equation 2 
with b 1 or b~ equal to zero depending upon 

whether the CLD belongs to phase I or phase H. 
Since Equation 2 is based only on the principle 
of conservation of Burgers vector for a disloca- 
tion, it does not depend on whether the CLD 
arrive at the boundary by glide or by climb. 

As a result of the shear, the boundary itself 
undergoes shape and orientation changes which 
can be determined from the geometrical pro- 
perties of the dislocation responsible for the 
shear. For example, when a dislocation with 
Burgers vector b 1 cuts through the boundary, it 
leaves a ledge in the boundary, the component of  
its height normal to the boundary is given by 

+ 
hi -- 2 (5) 

In cases where the ledges are formed in the 
boundary, the ledges and their associated dis- 
location are to be considered as one entity since 
one cannot be separated from the other [31, 32]. 
Owing to its dislocation character, the boundary 
ledge can be classified as either a glissile or glide 
ledge or as a sessile or climb ledge [33] on the 
basis of Equation 4. Whenever the ledge moves, 
either by glide or by climb, the boundary under- 
goes migration. Boundary sliding could also 
occur along with migration if the dislocations 
associated with the ledge have Burgers vector 
components parallel to the boundary [32]. Many 
experimental observations [34-37], in fact, show 
that grain-boundary sliding almost always 
occurs along with grain-boundary migration. 

*These interface dislocations have long range stress fields associated with them. Such long range stress fields are 
generally relieved by the presence of appropriate misfit dislocations in either phase [30]. For the purpose of the 
present analysis, however, we assume that there is a continuity of slip planes across the boundary whenever the slip 
plane traces at the boundary are parallel (Fig. 2). 
?Since the Burgers vector b~ is not in general a lattice vector of either phase, the mobility, if any, of the mismatch is 
restricted to the plane of the interface. 
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The displacement of the boundary as a result 
of its migration owing to the motion of the ledge 
is given by the component of the height of the 
ledge normal to the boundary, ha (Equation 5). 
On the other hand, the magnitude of the sliding 
is given by the magnitude of the component of 
the Burgers vector of the interface dislocation 
parallel to the boundary, i.e., by 

h~ = bi - (bi. hi)hi (6) 

The ratio of [h~[ to ha gives the ratio of the 
boundary sliding to its migration as a result of 
the motion of the ledge. For grain boundaries, it 
is possible to represent Equation 2 in terms of a 
co-ordinate system that describes a common 
lattice between the two grains, such as the 
coincidence site lattice or its sublattice [31] 
(SCS lattice). In terms of the SCS lattice all 
Burgers vectors, such as hi, b z and bi are 
expressible in integral units. In such cases the 
ratio of brain-boundary sliding to its migration 
is expressible in terms of integer ratios. On the 
other hand, if the dislocations do not have ledge 
character, and if they are still glissile (Equation 
4) then their motion on the plane of the interface 
causes pure sliding. 

4, Homogeneous shear 
As discussed previously [16] the passage of 
equal numbers of dislocations from one phase 
to the other on every Mth plane causes a homo- 
geneous shear of the boundary. The shape and 

orientation changes that occur as a result of the 
homogeneous shear are schematically illustrated 
in Fig. 3. The ledges associated with the homo- 
geneous shear are represented in Fig. 3b. If  
A'B'C'D' represents an average plane of the 
boundary after shear and NI its outward normal, 
then the change in the orientation of the plane 
of the boundary as a result of the homogeneous 
shear can be represented by 

Nha 
tan S = -~- (7a) 

and 
Nz = cos S ni - sin S (LI • nz) (7b) 

where N is the number of dislocations cutting 
through the boundary on every Mth plane, and 
h 1 from Equation 5 is the height of the ledge 
owing to each dislocation. For ha = 0, corres- 
ponding to the case where the cutting dislocations 
do not form ledges in the boundary, S = 0 from 
Equation 7, as is to be expected. In such cases, 
the boundary orientation remains unaltered. 

Fig. 3c also shows the array of interface 
dislocations that are left in the boundary as a 
result of the homogeneous shear. The Burgers 
vectors of these dislocations are given by 
Equation 2. This array can be resolved into 
three simpler arrays, namely, one screw disloca- 
tion array and two edge dislocation arrays, the 
stress fields of which have been explicitly 
calculated using an isotropic approximation 
[38]. The components of the Burgers vectors of 

, D D' D' 

(b) L t / L I x N !  

(d) (e) (f) 

Figure 3 (a) Plane of the interface before shear, (b) ledges formed owing to homogeneous shear, (c) orientation of the 
average interface plane after shear, (d) (e) and (f) resolution of interface dislocations as pm:e screw and edge dis- 
locations. 
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the dislocations in the simpler arrays (Fig. 3d, e, 
f) are given by 

bI s = h i .  L I  (8) 

bi el = bi. NI (9) 

bI e2 = b I . ( L I X N I )  . (I0) 

The dislocation arrays d and f in  Fig. 3, whose 
Burgers vectors are given by Equations 8 and 10, 
have long range stresses associated with them. 
The array of dislocations represented by Fig. 3e, 
on the other hand, has no long range stress 
fields. The array, however, changes the relative 
orientation of the two phases. In particular, it 
induces an additional tilt component A8, the 
axis of the tilt being parallel to LI, the line vector 
of the dislocations. 

If the boundary before shear possesses a tilt 
component, then the additional tilt angle, A 0, 
induced by the homogeneous shear could either 
increase or decrease the original tilt angle. In the 
approximation of a small homogeneous shear, 
the tilt component induced by the shear is given 
by [39] 

/10 ~ [ b I e l  I �9 
M (11) 

For further deformation of the boundary, the 
transformation matrix aj~ in Equation 1 should 
incorporate this change in the orientation of the 
two phases in order to determine the Burgers 
vector of the interface dislocation by Equation 2. 

5. Effect of stress relief 
The long range stress fields produced as a result 
of the homogeneous shear could, in general, be 
relieved by the nucleation of appropriate crystal 
lattice dislocations from both phases. The CLD 
react at the boundary to give the interface 
dislocations with Burgers vector components that 
are opposite to the ones produced during the 
deformation. They could increase the asymmetry, 
~b, in Fig. 3c by increasing the height of the ledges 
and also could restore the original misorientation 
angle 0. Some of these aspects are discussed in 
detail with reference to the structure of asym- 
metric tilt boundaries [40, 41]. It may not be 
possible, in general, to relieve the stress fields of 
all the dislocation arrays in Fig. 3 by one set of 
crystal lattice dislocations from both phases. 
Furthermore, stress relief could also occur with- 
out the nucleation of these crystal lattice dis- 
locations, but with the rearrangement of the 
interface dislocations by both glide and climb 

into arrays that have no long range stress fields. 
For example, the dislocations in the array 
represented in Fig. 3f could move by glide and 
climb into the boundaries that are normal to the 
original boundary and form a tilt wall. Such a 
rearrangement, in addition to reducing the long 
range stress fields of the dislocation array in 
Fig. 3f, alters the misorientation relationships 
between the two phases adjacent to the boun- 
daries in which they now exist [42]. In the later 
part of this paper, some of these processes are 
discussed with reference to the specific disloca- 
tion arrays generated as a result of homogeneous 
shear of the interface boundaries. 

It was shown earlier that disclinations are 
necessary for the passage of edge dislocations 
across a twist boundary by glide [20]. For this 
case, the slip planes traces, L1 and L~ make an 
angle equal to the angle of twist at the boun- 
dary. In general, the conditions under which 
disclinations are necessary for the passage of 
dislocations across an interface, precluding 
diffusion, can be stated as follows. First, the 
slip vectors bl and b 2 should have a component 
parallel to the normal vector ni of the boundary. 
This condition can be expressed as 

b~. ni # 0 
and 

b2. ni # 0 . (12) 

Secondly, the traces of slip planes on the plane 
of the boundary should make an angle 7 with 
one another as shown in Fig. 4. The above 
conditions will imply that the slip steps pro- 
duced along the boundary will make an angle 7 
with one another and, hence, disclination loops 
are necessary to accommodate the mismatch at 
the boundary. 

Since bl, b 2 and ni are selected parameters, the 
first condition can be readily checked. For the 
second condition, the angle 7 should be deter- 
mined. For this, the unit line vectors L1 and L2, 
which are the lines of intersection of the slip 
planes in phases I and II, respectively, with the 
plane of the interface (see Fig. 4), can be deter- 
mined using the following relations: 

L1 = nl • ni (13) 
and 

L2 = n2' • ni (14) 

where n2' is the vector n2 expressed in terms of 
the unprimed co-ordinates using Equation 1. 
Thus 

n2i' = aij n2j. (15) 
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Figure 4 Orientation of the slip plane traces at an interface. 

Equations 13 and 14 give L 1 and L2 expressed in 
terms of unprimed co-ordinates. The angle y 
(Fig. 4) is given by 

= cos  -1 (L1 .  L ~ ) .  (16) 

Thus, if y = 0 twist disclinations are not 
necessary for the channelling of dislocations 
from one phase into the other; whereas, when 
y @ 0, disclinations are necessary if the Burgers 
vectors have a component along nz. 

On the other hand, if diffusion is not pre- 
cluded, the dislocations can cut through the 
boundary leaving behind a boundary dislocation 
given by Equation 2. Similarly, Equation 5 can 
be used to determine the height of the ledges 
generated as a result of such deformation. 

Finally, Equation 2 could also be represented 
in any other system of co-ordinates. For example, 
if the orientation relationship between the two 
phases are given in terms of the co-ordinates of 
the unit cell of each crystal, then the trans- 
formation matrix a~j that connects the slip 
systems in the two phases is given by 

aij = Sik Ck~ S~j' (17) 

where S~ and Su' are the transformation 
matrices that connect the slip systems in phase I 
and phase II to the co-ordinates of the unit cells 
in the respective phases, while C~z is the trans- 
formation matrix that connects the co-ordinates 
of the unit cells of the two phases. Fig. 5 
schematically represents the order of these 
transformations. 

6. Applications 
In the following sections the above relations will 
be applied to the deformation of interfaces or 
grain boundaries. The passage of dislocations of 
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Figure 5 Transformation that relate the two slip systems 
adjacent to the interface. 

simple orientation is considered below and the 
passage of dislocations comprising any complex 
configurations can be resolved into the simple 
orientation. It should be understood, however, 
that whenever a dislocation that has a Burgers 
vector component normal to the boundary passes 
through the boundary it leaves behind a ledge 
given by Equation 5 along with the boundary 
dislocation. 

In a previous analysis [19] glide dislocations 
were described as parallel or perpendicular 
dislocations with reference to a rotation axis. 
Since both the rotation axis as well as the line 
vector of the dislocations are arbitrary in this 
analysis, we fix the fine vector and change the 
rotation axis. The description of the dislocation 
as parallel or perpendicular still remains the 
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Figure 6 Passage of parallel edge dislocation from phase I to phase II and the characteristics of the resulting interface 
dislocations for various orientations of the slip systems adjacent to the boundary. 

same. Furthermore, the orientation of b 2 with 
reference to L2 is arbitrary, hence, the nature of 
the glide dislocation as it passes from phase I 
to phase II need not remain the same. The co- 
ordinate axes selected for all of the following 
examples are such that xl, x2 and xz are parallel 
to b~, n~ andb~ x nl, respectively, and xx', x 2' and 
x3' are parallel to b2, n2 and b 2 x n2, respectively. 
This selection is consistent with the general 
analysis presented earlier. 

6.1. Edge dislocations 
Consider the two slip systems in the two phases 
oriented with respect to each other by a rotation 
about the x~ axis as represented in Fig. 6. Owing 
to this rotation, the two slip planes are tilted 
with respect to one another by an angle 0. The 
orientation of ni is represented by the angle c~ 
which is equal to 0/2 for a symmetric tilt. Con- 
sider an edge dislocation parallel to the axis of 
rotation. When this edge dislocation passes 
through the boundary it leaves a dislocation Lz 
in the boundary whose Burgers vector is given 
by Equation 2. From Fig. 6 the rotation matrix 
au is represented by 

I -cos O0 - s in  O0 O] 
a,~- = /sin cos 1] (18) 

/o 0 

and is identical to the one obtained for a tilt 
boundary. From Equations 2 and 18, the Burgers 
vector of the interface dislocation is given by 

bz = [(bl - b2 cos 0), b2 sin 0, 0] . (19) 

For a symmetric tilt n~ is given by 

n~ = (cos 0/2, - s i n  0/2, 0) (20) 
and for an asymmetric tilt, nz is given by 

nz = (cos % - s i n  ~, 0) . (21) 
If  b 1 is equal to b 2 Equation 19 reduces to 

bi = bl [(1 - cos 0), sin 0, 0] (22) 

which is the same result as that obtained for a 
simple tilt boundary. If  the boundary is one of 
symmetric tilt, then from Equations 20 and 22, 
Equation 4 is satisfied and the interface disloca- 
tion is of glissile type [19]. However, for asym- 
metric flit boundaries as well as when b 1 is not 
equal to b 5, Equation 4 will not be satisfied 
since the Burgers vector of the interface disloca- 
tion does not lie in the boundary. When 0 = 0, 
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Figure 7 Sequence of rotations and the relationships between the co-ordinate axes. 

bi will be zero only ifb 1 is equal to b2, otherwise, 
bi will be the difference between bl and b 2. The 
result for 0 = 0, is identical to that obtained by 
Fleischer [15]. Fig. 6 shows the orientation of 
bx for different orientations of the slip systems in 
the two phases adjacent to the boundary. 

In Fig. 6, the interface dislocations are of pure 
edge type and they are defined as glissile or 
sessile with reference to the original plane of the 
boundary before deformation. For a homogen- 
eous shear, however, the boundary acquires an 
asymmetry owing to the formation of ledges such 
as represented in Fig. 3b. With reference to this 
asymmetric plane of the boundary, the array of 
boundary dislocations obtained as a result of the 
homogeneous shear for all of the orientations of 
the slip systems discussed in Fig. 6 can be 
resolved into two arrays of edge dislocations 
represented by Fig. 3e and f. From the previous 
discussion, it is clear that the homogeneous shear 
would increase the angle of tilt by an amount A 0 
given by Equation 11. On the other hand, the long 
range stress fields associated with the dislocation 
arrays can be relieved by nucleation of crystal 
lattice dislocations which, for Fig. 6a, increase 
the asymmetry but changes the misorientation 
angle back to 0. For Fig. 6d, however, the stress 
fields associated with the interface dislocations 
could be annihilated by the nucleation of misfit 
dislocations from either phase which brings the 
orientation back to zero tilt. As a result of the 
homogeneous shear and the subsequent stress 
relief process, the interface acquires an asym- 
metry owing to the ledges along the boundary. 

In a further more generalized case, we remove 
the constraint that x3 and x3' are parallel and 
instead cause additional rotation of the co- 
ordinates by an angle, ~b, with respect to the 
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n2 axis as shown in Fig. 7. The transformation 
matrix for the second rotation is given by 

r0os  0 1 
= 1 (23) 

ass' 1. - sin r 0 cos r J 

and the total transformation (the order of 
rotation being first, 0 ~ around x3 axis and then, 

around n2 axis) is given by the product of a,j 
and a~/. 

[ c o s r  0 inr  
A~j = sin 0 cos 0 

- c o s 0 s i n r  sin 0s ine  cosCJ 
(24) 

Equation 24 can easily be checked for r = 0 
when A~j reduces to a~ given by Equation 18. 

The Burgers vector of the boundary disloca- 
tion can now be determined if an edge disloca- 
tion which is parallel to the x3 axis (parallel to 
the first rotation axis) passes through the boun- 
dary. From Equations 2 and 24, bi is given by 

bx = [(b 1 - b 2 cos r cos 0), (25) 
b~ cosr sin 0, - bz  sine]. 

For r = 0 Equation 25 reduces to Equation 19. 
Equation 25 shows that in addition to the edge 
components discussed with reference to Fig. 6, 
bi will now have screw components since the 
x3 component in Equation 25 is not zero. 

For the case where 0 = 0 and r @ 0 Equation 
24 reduces to Equation 23 and Equation 25 
reduces to 

bi = [(bl - b~ cos r 0, -b2  sin r . (26) 

If the rotation is symmetric then Lx will be given 
by 

LI = [ - s ine /2 ,  0, cosr  (27) 
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For an edge dislocation (Fig. 6) passing through 
the boundary (the line vector of the dislocation 
is now perpendicular to the rotation axis n2) the 
Burgers vector of the interface dislocation is 
given by Equation 26. It  can be easily shown that 
for a symmetric rotation and for bl = b~, 
bi x LI = 0 showing that the interface dislocation 
will be a pure screw [19]. However, for a general 
case the interface dislocation is of mixed type as 
illustrated in Fig. 8. 

~ nz 

///  

[o) SYMMETRIC TILT, Ib,l+21 
• x~/l o, // n2 

Lz bt bz n~ SCREW 
I ~ (GLISSILE) 
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l - MIXED - XI// bl LI b I ~ T . ~  n r 
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/ Xl/] be (c) SYMMETRIC OR ASYMMETRIC [bjelb21 
, #  

(d) ZERO TILT, [b,lelb21 

--'~Jl~- bI "D2 EDGE- 
LI i{ , P nIl~ SESSILE 

bj 

Figure 8 Passage of perpendicular edge dislocations from 
phase I to phase II and characteristics of the resulting 
interface dislocations for various orientations of the slip 
systems when 0 = O. 

As a result of the homogeneous shear for 
various orientations of the slip system discussed 
in Fig. 8, the boundary again acquires an 
asymmetry similar to that described in Fig. 3. 
The array of dislocations corresponding to the 
orientation in Fig. 8a is similar to an array of 
pure screw dislocations represented in Fig. 3d. 
The long range stress fields of this array can be 
relieved by nucleating CLD in both phases 
which combine at the boundary to give interface 
dislocations the Burgers vectors of which are 
opposite to that represented in Fig. 8a. Altern- 
ately, the stress fields could also be relieved by 
nucleating the CLD in both phases, the com- 
bination of which gives rise to an array of screw 
interface dislocations that are orthogonal to the 
one generated by homogeneous shear. It is to be 

noted that the crystal lattice dislocations from 
both phases may be needed to relieve the stress 
field of the arrays of the interface dislocations 
generated as a result of the homogeneous shear 
[32]. The dislocation arrays corresponding to 
Fig. 8b and c, on the other hand, can be resolved 
into an array of screw dislocations such as in 
Fig. 3d and an array of edge dislocations, such 
as in Fig. 3t". While the edge dislocation array has 
no long range stress fields, the stress fields of the 
array of screw dislocations can be relieved by the 
processes discussed above. 

nl 

xz// n~ }R/~x; / /n  z 

I / (e) SYMMETRIC OR ASYMMETRIC,Ib,r=Ib21 

~ ~ b I =0 (TRIVIAL SHEAR) 

~ [b) ZERO OR NON-ZEROTILT, Jb,]4~[bzl 
/-~ x# b2x % 

+ X, // XI // b, /t b z SCREW-GLISSILE 

Figure 9 Passage of parallel screw dislocations from phase 
I to phase II and the characteristics of the resulting 
interface dislocations for various orientations of the 
slip systems in the two phases. 

6.2. Screw dislocat ions 
We will now consider the nature of the boundary 
dislocations resulting from the passage of screw 
dislocations through the boundary. As a first 
step, consider the rotation axis similar to that 
shown in Fig. 6 and the line vector parallel to the 
rotation axis. Fig. 9 shows the orientation of the 
slip system and the dislocation as well as the 
resulting Burgers vector for different cases. The 
rotation matrix for such orientation of the co- 
ordinates is given by 

[i0 0 ] a~j = cos 0 - sin (28) 
sin 0 cos 

Equation 28 differs from Equation 18 owing to 
the differences in the system of co-ordinate axes 
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represented in Figs. 6 and 9. From Equations 2 
and 28, bi is given by 

bI  = b 1 - b 2 . ( 2 9 )  

For bt = b2, b r will be zero and the result is 
identical to that obtained by Das and Marcin- 
kowski [19]. For b~ # b 2 a screw dislocation is 
left at the boundary. An array of such disloca- 
tions will have a long range stress field associated 
with it. 

However, if we introduce an additional rota- 
tion ~b about the n2 axis (similar to Fig. 7) 
Equation 28 will change to 

[ ; o s ~ - s i n  ~ sin 0 
A~j = cos 0 

[sin 5b sin 0 cos 

si. cosl] 
- s i n  0 

COS ~ COS 

(30) 
Equation 30 reduces to Equation 28 for 4~ = 0 
or to Equation 23 for 0 = 0. 

From Equations 2 and 30, a passing screw 
dislocation will leave a dislocation at the boun- 
dary with a Burgers vector given by 

bi = [(bl - bz cosq~), (31) 
b2 sin ~ sin 0, b~ sin ~ cos 0]. 

For ~ = 0, Equation 31 reduces to Equation 30. 
For 0 = 0 and for ~ va 0, the glide dislocations 
considered in Fig. 9 is perpendicular to the rota- 
tion axis n2. Equation 31 for this case reduces to 

bx = [(bl - b2 cos ~), 0, b2 sin ~] . (32) 
Fig. 10 shows the various orientations of the two 
slip systems and the resulting interface disloca- 
tions. For the orientation of the two slip systems 
corresponding to Fig. 10a, the array of interface 
dislocations as a result of the homogeneous 
shear would correspond to that of Fig. 3e. 
Contrary to the previous assertion [19], no 
stress relief process is necessary since the array 
has no long range stress fields. The dislocation 
array, however, induces an additional tilt 
component given by Equation 11. For Fig. 10d, 
as well as for Fig. 9b, homogeneous shear would 
result into an array of screw interface disloca- 
tions and unlike the array corresponding to Figs. 
6d and 8d, the stress field of this array is not 
relieved by prismatic misfit dislocations since 
there are no dilatational stress fields for an array 
of screw dislocations. The stress fields could, 
however, be relieved by an equivalent orthogonal 
set of screw-type interface dislocations that have 
to be generated by the combination of CLD 
from both phases. Such an orthogonal set of 
screw dislocations, however, induces a twist 
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n I n2 

I {e) SYMMETRIC TILT, Ib, l=Ibzl 
bl 

.V7 n I 
LZ - " ~ ' I ~ t  lJ EDGE - SESSILE 

x3//b~ xnl T -,q.- j - - - - -z  
Xl// b ~ y  X~//b2 x n, (b) ASYMMETRIC TILT)IblHbz[ 

D i  "',//o, ,,[ _~ ,, ~ , M , X E O  - S E S S I L E  

{c) SYMMETRIC OR ASYMMETRIC, Ib,l:~lb2l 

kx -be I 

(d) ZERO TILT, [b,I*l~l 
I SO"EW-GLISSIL  

I 

Figure 10 Passage of perpendicular screw dislocations 
from phase I to phase II  and the characteristics of the 
resulting interface dislocations for various orientations 
of the slip systems in the two phases. 

component in the boundary. Alternately, the 
stress fields could be relieved by generating a 
parallel array of screw-type interface dislocations 
the Burgers vectors of which are opposite to those 
of the dislocations resulted owing to the homo- 
geneous shear. 

The nature of interface dislocations resulting 
from the passage of CLD across the interface 
has already been discussed for the case where 3/ 
(Fig. 4) is zero. However, the dislocation could 
also pass through the boundary when 3/is not 
zero. To illustrate this, consider a system of 
co-ordinates represented in Fig. 11 where the 
axis of rotation is parallel to hi. The transforma- 
tion matrix for this case is given by [cos  

alj = - s i n  3/ cos 3/ (33) 
0 0 

and from Equation 2 the Burgers vector of an 
interface dislocation arising from the passage of 
the screw dislocation represented in Fig. 11 is 
given by 

b~= [(bl - b2 cos 3/), -b2  sin 7, 0] . (34) 

Since ni is the axis of rotation (parallel to Xa) 
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PHASE I 

nl 

bl LI 
L2 /  

PHASE 2 /  
n z 

B I 

I A' 

~INTEIFACE ~b2 

X2// n'V' I n2 b~'--~ l EDGE - GLISSILE 

"//,,~// I n,//X~//Xg i Io,l:?t 
-b2 i Lz 

Figure 11 Passage of a screw dislocation from phase I to 
phase II when slip planes adjacent to the interface are in a 
twisted orientation. 

its co-ordinates are (001). Hence, from Equation 
34 the interface dislocation will be glissile 
whether or not bx = b 2. Fig. 11 shows that the 
two slip planes are twisted by an angle 7 with 
respect to each other. This does not necessarily 
mean that the interface is a twist boundary. 
(Even for a simple tilt boundary 7 may not be 
zero if one considers two different slip systems 
adjacent to the boundary.) If a dislocation AB 
is converted to A'B' (Fig. 11), in addition to 
creating the interface dislocation described by 
Equation 34, the dislocation has to glide by an 
angular component 7. For X = 0, Equation 34 
reduces to Equation 29. The homogeneous shear 
would leave an array of dislocations such as in 
Fig. 3f for the orientation of bx represented in 
Fig. l la  and a combination of arrays given by 
Fig. 3d and f f o r  the orientation ofbx represented 
in Fig. 1 lb, all arrays having long range stress 
fields. When 7 is not zero, either twist disclina- 
tion loops or diffusion of point defects are 
needed for the dislocations that have Burgers 
vector component along ni to be channelled 
through the boundary. The details of the mecha- 
nism of channelling of the dislocations by a twist 
disclination loop has been discussed earlier [20]. 
Fig. 12, on the other hand, shows the defects 
left by the crystal dislocation as it moves from 

J !/ Y 

L2 ;2 x~2 

co) ~b,[: Ib21 

(/~~ ~] n2 bI:O PURELEDGE X 2 nl 

"~"" SESSILE EDGE 
Y x,//x;//b, b,. 

x#l b,~ n~ //~'~/1 ~ ~ ' -  -~ 

Figure 12 Passage of an edge dislocation by climb from 
phase I to phase II when slip planes adjacent to the 
interface are in a twisted orientation. 

one phase to the other by climb. For  the case 
when b 1 = b 2 no interface dislocation is left 
behind. However, from Equation 5 a dislocation 
free ledge is left behind. Hence homogeneous 
shear would induce an asymmetry in the twist 
boundary. On the other hand, when b I =~ b 2 an 
edge dislocation similar to that shown in Fig. 6d 
is left behind along with the ledges. 

7. Summary and conclusions 
The deformation of internal boundaries such as 
grain boundaries, twin boundaries, two-phase 
interfaces, etc, has been analysed using the 
concepts of grain-boundary dislocations. In 
particular, attention has been focused on the 
disturbance created at the boundary when a glide 
dislocation crosses the boundary. Such a dis- 
turbance is characterized by a boundary 
dislocation, the nature of which can be deter- 
mined from a knowledge of the orientation 
relationships between the slip systems adjacent 
to the boundary. In fact, Burgers vectors of all 
of  the dislocations associated with all of  the 
internal boundaries can be represented by a 
single expression given by Equation 2. Physically, 
Equation 2 describes the principles of conserva- 
tion of the Burgers vector for a dislocation and 
it can be used to interpret the Burgers vectors of 
dislocations in internal boundaries as either the 
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D E F O R M A T I O N  OF I N T E R N A L  B O U N D A R I E S  

sum or the difference of the Burgers vectors of 
the CLD of the two phases adjacent to the 
boundaries.  

A m o n g  other things, it is also shown that  the 
or ientat ion and  shape of the boundar ies  are 
altered as a result of  a homogeneous  shear. Such 
a shear also leaves an  array of  dislocations that  
may have long range stress fields which could be 
relieved by the nucleat ion of CLD in bo th  
phases. The nature  of the interface dislocations 
produced as a result of  the passage of a disloca- 
t ion through the boundary  is derived for some 
simple orientat ions and  is summarized in  Table I. 
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